Search results for "MESH: Amphipoda"

showing 3 items of 3 documents

Differential influence of Pomphorhynchus laevis (Acanthocephala) on brain serotonergic activity in two congeneric host species.

2007

The physiological mechanisms by which parasites with complex life cycles manipulate the behaviour of their intermediate hosts are still poorly understood. In Burgundy, eastern France, the acanthocephalan parasitePomphorhynchus laevisinverses reaction to light in its amphipod hostGammarus pulex, but not inGammarus roeseli, a recent invasive species. Here, we show that this difference in manipulation actually reflects a difference in the ability of the parasite to alter brain serotonergic (5-HT) activity of the two host species. Injection of 5-HT in uninfected individuals of both host species was sufficient to inverse reaction to light. However, a difference in brain 5-HT immunocytochemical s…

LightMESH : Serotonin[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyMESH : Host-Parasite Interactions5-HTIntroduced speciesbiological invasionMESH : Behavior AnimalGammarus spphost manipulationAcanthocephalaMESH: AmphipodaMESH: Behavior Animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH : LightParasite hostingMESH: AnimalsbiologyBehavior AnimalEcologyMESH : Acanthocephala[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]BrainMESH : AmphipodaAgricultural and Biological Sciences (miscellaneous)[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyGeneral Agricultural and Biological SciencesAcanthocephalaResearch Article[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologySerotoninZoologyMESH: Host-Parasite InteractionsHost-Parasite InteractionsMESH: BrainSpecies SpecificityGammarus roeseliMESH : Species SpecificityMESH: Species SpecificityAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaHost (biology)Gammarus spp.MESH: Acanthocephalabiology.organism_classificationMESH: LightGammarus pulexPulexMESH : BrainPomphorhynchus laevisMESH: SerotoninMESH : Animals[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisBiology letters
researchProduct

Is there a role for antioxidant carotenoids in limiting self-harming immune response in invertebrates?

2007

Innate immunity relies on effectors, which produce cytotoxic molecules that have not only the advantage of killing pathogens but also the disadvantage of harming host tissues and organs. Although the role of dietary antioxidants in invertebrate immunity is still unknown, it has been shown in vertebrates that carotenoids scavenge cytotoxic radicals generated during the immune response. Carotenoids may consequently decrease the self-harming cost of immunity. A positive relationship between the levels of innate immune defence and circulating carotenoid might therefore be expected. Consistent with this hypothesis, we show that the maintenance and use of the prophenoloxidase system strongly cor…

MaleantioxidantMESH : Immunity Natural[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunologyAntioxidantsMESH: Linear ModelsMESH: AmphipodaHemolymphMESH : Linear ModelsHemolymphMESH: AnimalsMESH : FemaleCarotenoidchemistry.chemical_classificationbiologyEffectorMonophenol Monooxygenasefood and beveragesProphenoloxidaseMESH : AmphipodaAgricultural and Biological Sciences (miscellaneous)MESH : Monophenol Monooxygenase[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMESH : AntioxidantsFemaleGeneral Agricultural and Biological SciencesResearch ArticleMESH: Monophenol MonooxygenaseMESH : Maleimmune costsecological immunologyMESH : Hemolymph[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyImmune systemImmunityAnimalsAmphipodaMESH: Immunity NaturalMESH : CarotenoidsInnate immune systemMESH: HemolymphMESH: Antioxidants[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologybiochemical phenomena metabolism and nutritionbiology.organism_classificationCarotenoidsImmunity InnateMESH: MaleGammarus pulexchemistryImmunologyMESH: CarotenoidsLinear ModelsbacteriaMESH : AnimalsMESH: Female
researchProduct

Do distantly related parasites rely on the same proximate factors to alter the behaviour of their hosts?

2006

Phylogenetically unrelated parasites often increase the chances of their transmission by inducing similar phenotypic changes in their hosts. However, it is not known whether these convergent strategies rely on the same biochemical precursors. In this paper, we explored such aspects by studying two gammarid species ( Gammarus insensibilis and Gammarus pulex ; Crustacea: Amphipoda: Gammaridae) serving as intermediate hosts in the life cycle of two distantly related parasites: the trematode, Microphallus papillorobustus and the acanthocephalan, Polymorphus minutus . Both these parasite species are known to manipulate the behaviour of their amphipod hosts, bringing them towards the water surfa…

Proteomics0106 biological sciences[SDV]Life Sciences [q-bio]MESH : Host-Parasite InteractionsMESH : Behavior Animal[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomyMESH: Peptide Mapping01 natural sciencesAcanthocephalaMESH : ProteomicsMESH: AmphipodatrematodeMESH: Behavior Animal[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsElectrophoresis Gel Two-DimensionalMESH: PhylogenyPhylogenyComputingMilieux_MISCELLANEOUSGeneral Environmental Science0303 health sciencesMESH : Peptide MappingBehavior AnimalbiologyEcologyMESH : AcanthocephalaMESH: ProteomicsGeneral MedicineMESH : Amphipodamanipulative parasiteMESH : TrematodaMESH: TrematodaMicrophallusTrematodaTrematodagammaridGeneral Agricultural and Biological SciencesAcanthocephalaResearch Article[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologymolecular convergenceAmphipodaZoology[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: Host-Parasite InteractionsPeptide Mapping010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHost-Parasite Interactions03 medical and health sciencesproteomicsPhylogeneticsAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipoda030304 developmental biologyGeneral Immunology and MicrobiologyHost (biology)MESH : Phylogeny[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH : Electrophoresis Gel Two-DimensionalMESH: AcanthocephalaMESH: Electrophoresis Gel Two-Dimensionalbiology.organism_classificationacanthocephalanGammarus pulexPulexMESH : Animals[ SDV.BID.SPT ] Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct